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Human-Autonomy Teaming:

T&E Issues and Recommendations
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Advise on Testable, Mission-

Relevant Requirements

Approve Test & Evaluation Master 

Plan Submitted by Program Office

Collaborate with DT&E to gain 

early insight into performance

Approve operational and live fire test 

plans submitted by Service OTAs

Evaluate system performance in a 

report to congress & DoD leadership

DOT&E Activities and Mission

Inform Production/Fielding 

Decision

Authoritative source for DoD weapon systems’ operational capabilities
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DOT&E Mission

▪The short version…
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▪ Software Intensive Systems and Cybersecurity

▪ Move to Digital Engineering: Accredited Models and Simulations

▪ “Shifting Left” with Integrated DT/OT Testing

▪ Improving Our Test Environments

▪ Emphasizing Importance of Human-System Interaction

▪ Assessing Reliability’s Impact on Sustainability

▪ Maintaining an Expert Workforce

▪ Adapting T&E for Emerging Technologies

DOT&E Focus Areas
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Situated Agency

▪ Sensing the environment, assessing the situation, reasoning about it, 

making decisions to reach a goal, and then acting on it

Multi-Agent Emergence

▪ Interacting with other agents, human or otherwise, affording novel 

emergent behavior of the group/team

Experiential Learning

▪ “Learning” new behaviors over time and experience…

Desired properties

▪ Proficiency, trustworthiness, flexibility → AI-Enabled

Autonomous Systems (AS)

(Enabled by AI)

Adaptive Cognition

▪ Using different modes 

of “thinking”, from 

low-level rules, to 

high-level reasoning
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Autonomous Systems:

T&E Issues

“Flexible” Autonomous Systems operating in complex, dynamic, stochastic environments

▪ External variability + internal complexities → huge non-convex state spaces

▪ Learning over time and experience can change behaviors → non-stationarity

▪ Emergence of behaviors across agents → potential for changing CONOPS

Infrastructure shortcomings

▪ Difficulty specifying requirements at an operational/behavioral level

▪ Acquisition pipeline fundamentally materiel-oriented

▪ Lack of common Autonomous Systems architectures/frameworks

▪ Lack of T&E methods, tools, testbeds, ranges, and experienced personnel

▪ No up-front instrumentation or design for “testability” or “explainability”

▪ Current certification methods predominantly manual, subjective, specialized

Unique T&E challenges ensuring safety and security

▪ Real-time monitoring systems for safe operations bring own T&E demands

▪ Conventional cyber attacks can be “tuned” for subtle attacks on performance

▪ And adversarial attacks call for expanded T&E scope to better model threats
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Autonomous Systems:

T&E Recommendations

T&E needs to influence requirements, design, and development

▪ Architect ASs using common frameworks and modular subsystems 

▪ Support “cognitive instrumentation” via sensors, assessors, and “explainers”

▪ Curate training data and follow accepted HSI design principles

Extend/develop T&E methods/tools to deal with stochastic, adaptive, 

emergent behaviors, and AS-specific vulnerabilities

▪ Methods/tools for complex, non-stationary, and non-deterministic systems

▪ Account for “emergent behavior” and defining the SUT

▪ New statistical engineering methods for T&E design and analysis

▪ Assessment/mitigation of subtle cyberattacks and adversarial attack vectors

Invest in infrastructure and process

▪ Develop unifying infrastructure for requirements generation/traceability 

▪ Move to “T&E Lifecycle” viewpoint and Invest in “digital modernization”

▪ Make massive use of M&S, test automation, & data analytics everywhere

Human-system teaming

▪ View the H-S Team as the SUT and embrace co-development of CONOPS with ASs

AS: Autonomous System
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▪ Short term

▪ Instances of “partial autonomy” at the component level in test 

plans are now coming through the office

▪ Working to develop interim guidelines for dealing with these

Next Steps for DOT&E

▪ Mid term

▪ This trend will accelerate

▪ Working with multiple AI/AS T&E 

groups throughout DOD covering 

policy, guidance, technologies, 

testbeds, and workforce

▪ Reaching out to all of you in how to 

deal with this nascent technology

▪ Need to execute smartly on the 

recommendations to get ahead of the 

expected T&E challenges
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Hava Siegelmann

Trusting AI – The right and wrong



?
sco.wikipedia.org/wiki/T-90#/media/File:2013_Moscow_Victory_Day_Parade_(28).jpg

encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcR1

JBgUwaxPbtbpHg1V9jr0udGfqFD0xu5GWoJJ9WKHvyHS42G5oA

Most deceptions build on desired features of “good AI” like pattern based classification,  or “robustness to size” 

?
Add tiny stickers, human eye 
cannot capture
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Deceptions against AI: 
1. Use the super-human pattern sensitivity



Inject into images

Generate poisoned data

Add glasses

Accessory

NVIDIA arXiv:1812.04948

(exaggerated for visualization)

Add to 

training set

Poisoned 

Recognition 

System

Deceptions against AI: 
2. Make use of any “reliable” data  - the wonder woman experiment
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Solutions don’t generalize 

ImageNet classification
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Adversarial attacks cause a 

catastrophic reduction in ML capability

Many defenses have been tried and 

failed to generalize to new attacks

Adversarial Attacks 

Top 

ImageNet 

Finishers

Attack / defense cycle

Distillation

Detection

GANs

Single Step attacks

Multi-stage attacks

Optimization attacks

Approximation attacks

Adversarial training

Attack Defense

Challenge year
e.g. Fast Gradient Sign (FGS)

e.g. Iterative Gradient Sign (IGS)

e.g. Carlini & Wagner (CW)

e.g. Backward Pass Differentiable 

Approximation (BPDA)

2008 2010         2012         2014         2016         2018
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My DARPA’s GARD 
Guaranteeing AI Robustness against Deception

Three efforts:
A) Fundamental study of robust generalization

B) Principled defenses and new defensible ML systems

C) Testbeds to evaluate defensibility under different threat scenarios and resource-constrains

More accurate testing
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More accurate testing

Robustness 

guarantees



My Two Additional AI Explorations 

1. CSL (collaborative Secured Learning)

Use of secured data only,  to get more: share while keeping privacy

2. RED (Reverse Engineering against Deceptions)

Analyze relationships among methods of deceptions and their origins  
(e.g., Iran and North Korea working together)



Protecting against AI stupidity

Not even trustworthy 

in unstructured 

environments!

Beyond human capabilities

©IBM

i2.kknews.cc/SIG=29vnh65/2175/

3455714929.jpg

©DeepMind Technologies

©Apple

www.bbc.com/news/technology-44300952

Tesla hit parked police car 

while using Autopilot

www.reddit.com/r/funny/comments/7r9ptc/

i_took_a_few_shots_at_lake_louise_today_and/dsvv1nw

Poor Google panoramic 

image fusion

Gay?Straight?
www.theatlantic.com/magazine/archive/2018/

11/alexa-how-will-you-change-us/570844
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My Lifelong Learning machine program (L2M)

Time

Training       Fielded

Current AI

Adapts to change

Continues to improve

P
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ce

Surprise

▪ No way to prepare a training set for all possible futures

▪ And – it is very easy to attack a non-changing system

▪ Adapting systems - smarter and impossible to predict

New AI

Fixed capability

Brittle to change

AI is frozen after programming & training;

AI only does what it was taught to do



Testing for lifelong learning: New capabilities

Example simulation with injected surprises

(From SRI☺ Modified StarCraft2* 

with dynamics surprises injected 

on-the-fly:

▪ Change terrain

▪ Move goals 

▪ Alter unit capability

▪ Switch friends to foes

▪ Increase weapon range

* Blizzard Entertainment, 2010
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Continuum of computational hierarchy. From Turing Machines (fixed 
deterministic programs) to Super-Turing Computation (modifiable 
context sensitive programs).

http://1.bp.blogspot.com/-Vl3F-
DL2Raw/T9wLn7ZiaVI/AAAAAAA
AAsI/CtJfKSmLrk0/s1600

1. Analog values (Real)
2. Randomness/asynchronous 
3. Lifelong Learning, evolving
4. Series of TM’s
Neural networks (AnalogP)

ST- Possible Ingredients (each alone is sufficient)

1. Discrete (Q)
2. Deterministic
3. Pre-programmed
•Turing machines (P)

T-computation

⍺ 𝞊 Kolmogorov[f(n),g(n)] :  UTM calculates ⍺[n-
prefix] from f(n) bits in g(n) time  P=K[1,p(n)]  
AnalogP=K[n,n]

Lifelong Learning introduces superior computation capabilities:
Super-Turing Continuum Hierarchy
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Human in the Loop – But Smartly !

Putting AI and human together:

a.   We showed how to optimize (semi-) automatic 
system efficiency with a bit of human participation:
Assistive technology that empowers 

controller to take on many tasks, work

efficiently, reduce biases & errors, and 

hugely reduce cognitive load
(US patent, 2020)

b. This can be transitioned immediately 
(Umass or Blue skAI llc)

c.   Optimize AI trustworthiness with a bit of human participation and designed modularity (research)
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Summary

Prosthetics that learn to adapt to the wearer

Sofge, Popular Science

Solutions to AI brittleness: 
Lifelong Learning (L2)

Robustness in design + multiple inputs 
Clean data 

Human input
Resource constrained analysis
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Case study: Trusting AI in organ allocation

John Dickerson - Jan 2021 - john@cs.umd.edu

US waitlist: a bit under 100,000
• 35-40k added per year

4k people died while waiting

15k people received a kidney
from the deceased donor waitlist

6.5k+ people received a kidney from a living donor
• Some through kidney exchanges!

“AI” – optimization, automation, and machine learning – plays a large 
role in running many organ exchanges worldwide (including the US!)

1988 1993 1998 2003 2008 2013

Transplants Waiting List

Supply
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Wife Husband

Brother Brother

(2- and 3-cycles, all surgeries performed simultaneously)

What is a kidney exchange?

John Dickerson - Jan 2021 - john@cs.umd.edu

D1 P1

D2 P2

D3 P3

D4 P4

D5 P5
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Non-directed donors & chains

Not executed simultaneously, so no length cap based on logistic concerns …

… but in practice edges fail & chains execute over many years, so some finite 
cap is used while planning a single match run.

John Dickerson - Jan 2021 - john@cs.umd.edu

NDD

P1

D1

P2

D2

P3

D3

…Pay it 
forward
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Kidney exchange designer as engineer

John Dickerson - Jan 2021 - john@cs.umd.edu

Find the best set of potential transplants.

Design scalable algorithms

with provable performance, robustness, 
and incentive guarantees

that accurately reflect stakeholders’ wants

and implement them as real-world systems that …
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How is this done …?   

• Stakeholders decide: the design space (objectives, constraints, ..)

• Technicians decide: the implementation (optimization, RL, viz, ..)

John Dickerson - Jan 2021 - john@cs.umd.edu

f( , , , )

- define moral theories & 
morally-relevant features

(1) Stakeholders

- select a design option, or
- refine moral theories based 

on feedback & return to (1)

(3) Stakeholders

- create design options 
- characterize morally-relevant 

features   

(2) Technicians
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What to address & monitor …?

• Fairness and bias issues

• Data drift

• Legal violations

• Lack of expert comprehension 

• Lack of non-expert comprehension

• Drift in public perception & sentiment

• Lack of consensus on success metrics

• …

John Dickerson - Jan 2021 - john@cs.umd.edu 33



Similar issues arise in all “AI” applications!

John Dickerson - Jan 2021 - john@cs.umd.edu

• Fairness and bias issues

• Data drift

• Legal violations

• Lack of expert comprehension 

• Lack of non-expert comprehension

• Drift in public perception & sentiment

• Lack of consensus on success metrics

• …
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• Specifications – or lack thereof

• Data is the specification!

• Poorly characterized uncertainty 

• Undefined behaviors lurk around regions of well-defined 
behavior

• Opaqueness and complexity of implementation

• Classical notions of coverage meaningless

• Learning and adaptation 

• Environment and system are both non-stationary

Challenges in assuring learning-enabled systems

?

Reliably 
spoofable

DISTRIBUTION A.  Approved for public release: distribution unlimited

UNCLASSIFIED
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Assurance architecture for learning-enabled systems

TA1: Design 
for 
Assurance

TA3: 
Quantify 
Assurance

TA2: Operate 
with Assurance

Autonomous LE-CPS

Actuator
s

Plant

Sensors

CL: claim
E: evidence
E’: conditional evidence 

Assurance 
Monitors & 

Guards

New System Models New Formal 
Verification

New Simulation 
based Testing

New System
Testing

E’

Dynamic Assurance

Design Time

Operation Time Implementation

LEC LEC

E’

New Assurance Case

CL
CL

CL

CL

CL

E’

E’

E

CL
CL

CL

CL

E’

E’
Controller

Autonomy Components

Env. Goals

Safety aware learning

Derived and Linked

C: component
LEC: learning-enabled component

C C

C C C

C C C

Assurance Measure

How do we maximize coverage and derive evidence 
of correctness for machine learning based 

components?

How do we detect and ensure safety when 
operational conditions diverge?

How do we 
formulate 

assurance cases
for safety-critical 
systems that use 
machine learning?

DISTRIBUTION A.  Approved for public release: distribution unlimited

UNCLASSIFIED

38



Assurance architecture for learning-enabled systems
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Technology Map

TA1:
Design 
time 
Assurance

Challenge Formal Verification Simulation-based Test Synthesis Monitor Synthesis

Approach(es) SMT solvers, LP solvers, Hybrid 
solvers, Theorem provers 

Scenario 
description
languages, 
toolchain

Manifold-based,
Test coverage

Spec-based,
Learning-based

Performers Collins (Stanford), VU, U. Penn, 
HRL (CMU), Imperial

UCB, VU UCB, Collins (UMN) Collins (Kestrel), 
VU, DOLL, Galois

TA2:
Operation 
time 
Assurance

Challenge Assurance Monitoring Resilience and Recovery

Approach(es) Conformal prediction, Anomaly 
detection, Confidence estimation

Game theory, Simplex 
architecture, Contingency logic

Performers VU, UCB, U. Penn DOLL, Galois, Collins

TA3:
Assurance 
Case

Challenge Assurance Case Construction

Performers SGT, VU, Collins, U. Penn

TA4:
Platforms

Air Domain Underwater 
Domain

Ground Domain

Boeing Northrop
Grumman

CCDC-
GVSC/HRL
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