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No One Should Rely on Artificial Intelligence

Software safety is hard to achieve, even for systems that don’t use Al

Al is used to manage dynamism, complexity, and uncertainty
There's no reason to believe that Al makes the safety problem easier
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Rely on the System, not on System Components

Al is a system component
Don’t rely on Al; try to build a system you can rely on
Requires that systems be architected to include:
Effective safeguards and harm mitigation,
Monitoring and testing throughout the full life cycle, and
Human accountability
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Eternal Vigiliance is the Price of Liberty

Al can learn over time; data sets grow and change rapidly

No pointin time where we can safely turn off monitoring and surveillance
Full lifecycle monitoring and testing is a fundamental requirement
This is a big data problem, not a pass/fail testing problem
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The System Includes People, Organizations, and Missions

Al systems make decisions that affect people
Poor Al systems risks:

Malpractice

Unfairness

Diminishing agency

Rejection by humans
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Motivating Example: DDG 1000

“The right answer delivered too
late becomes the wrong answer”




Motivating Example: DDG 1000

“Captain James Kirk Takes Command of the
Navy’s New $4 Billion Destroyer”



http://www.thefiscaltimes.com/2016/05/20/Real-Captain-Kirk-Takes-Command-Navy-s-New-4-Billion-Destroyer
http://www.thefiscaltimes.com/2016/05/20/Real-Captain-Kirk-Takes-Command-Navy-s-New-4-Billion-Destroyer

DDG 1000 has a "Total Ship Computing Environment”

www.raytheon.com/capabilities/products/zumwal
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DDG 1000 has a "Total Ship Computing Environment”

*A single, encrypted network of 500+ multi-core

computers that controls all shipboard computing 7,
applications \\J

www.raytheon.com/capabilities/products/zumwal
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DDG 1000 has a "Total Ship Computing Environment”

*A single, encrypted network of 500+ multi-core

computers that controls all shipboard computing o~
applications \\‘/
* e.g., ranging from the ship’s lights & machinery
control to its radars, weapon systems, & crew
entertainment

www.raytheon.com/capabilities/products/zumwal



http://www.raytheon.com/capabilities/products/zumwalt
http://www.raytheon.com/capabilities/products/zumwalt

DDG 1000 has a "Total Ship Computing Environment”

*The TSCE's high degree of automation enables
the ship to run more effectively & efficiently &
dramatically reduces manning requirements

www.raytheon.com/capabilities/products/zumwal
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The DDG 1000 TSCE Enables Dynamic Resource Management

ission Priority -
Info Warfare Air Defense Land Attack
Hig Medium

Computing  Network

Resource allocation can be optimized dynamically across the TSCE




The DDG 1000 TSCE Enables Dynamic Resource Management
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Resource allocation can be optimized dynamically across the TSCE




TSCE is a Major Improvement on Legacy Combat Systems
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TSCE is a Major Improvement on Legacy Combat Systems

* Proprietary UYK-43s computers
 Point-to-point interconnects




TSCE is a Major Improvement on Legacy Combat Systems

* Proprietary UYK-43s computers
* Point-to-point interconnects
* Limited growth capability




TSCE is a Major Improvement on Legacy Combat Systems
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* Proprietary UYK-43s computers
 Point-to-point interconnects

 Limited growth capability

* Tightly constrained by stove-pipe subsystems




TSCE is a Major Improvement on Legacy Combat Systems

* Proprietary UYK-43s computers

* Point-to-point interconnects

* Limited growth capability

* Tightly constrained by stove-pipe subsystems
* Highly vulnerable to damage




TSCE is a Major Improvement on Legacy Combat Systems

~ Mi ority

nfo Warfare Air Defense Land Attack
Med Medium

Resources allocated statically at initial system configuration!




TSCE is a Major Improvement on Legacy Combat Systems

~ Mission Priority
Info Warfare  Air Defense Land Attack
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TSCE is a Major Improvement on Legacy Combat Systems
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« Static allocation is problematic in several scenarios
* When # of threats exceed design parameters




TSCE is a Major Improvement on Legacy Combat Systems
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« Static allocation is problematic in several scenarios

* When resources are damaged/degraded




TSCE is a Major Improvement on Legacy Combat Systems
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Threats

i

vvvvvvvvv

« Static allocation is problematic in several scenarios
* When # of threats exceed design parameters
* When resources are damaged/degraded

Dynamic resource management (DRM) can help both these scenarios




DARPA ARMS Program Created DRM for DDG 1000 TSCE

www.atl.external.Imco.com/programs/arms.ph
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DARPA ARMS Program Created DRM for DDG 1000 TSCE

~ Mission Priority
| InfoWarfare  Air Defense Land Attack

Info Warfare Application

RS DI C eSS . Measured QoS

Computing  Network

e

<

* ARMS created semble-based bin-packing DRM middleware

Connections &
priority bands

Control
Vars.

QoS

Workload &
Replicas

Connections &

priority bands

Network latency
& bandwidth

A

Land Attack Application

Connections &
priority bands

|| Network latency

& bandwidth

—

See

wwWW dre vanderhilt edii/~<cchmidt/PDF/I1SS-7006A Nndf



http://www.dre.vanderbilt.edu/~schmidt/PDF/JSS-2006.pdf

DARPA ARMS Program Created DRM for DDG 1000 TSCE

~ Mission Priority -

Info Warfare Application
Info Warfare  Air Defense Land Attack QoS Land Attack Application

Computing

Control
Network

Workload &
vars. Replicas

Connections &
priority bands

Connections & Connections &
priority bands

priority bands

| )]
[ Il
b

Network latency
& bandwidth

A

Network latency
1 & bandwidth

« Automatically adapts to changes in mission conditions

See www.dre.vanderbilt.edu/~schmidt/PDF/autonomic-journal.pdf



http://www.dre.vanderbilt.edu/~schmidt/PDF/autonomic-journal.pdf

DARPA ARMS Program Created DRM for DDG 1000 TSCE

~ Mission Priorj

c Air Defense Application
Info Warfare QoS Land Attack Application
| ow ig

RS DI C eSS . Measured QoS

Control

Workload &
vars. Replicas

Computing  Network

IR 00U Connections &
3 priority bands
L0

Connections &

Connections &
priority bands

priority bands

CPU & memory
Network latency
& bandwidth

A

Air Threat

 Ensures the allocation of computing & network resources accurately

matches changing priorities of mission requirements



ST ARMS

« Proved that dynamic resource
allocation delivers significantly
greater survivability of combat
system functionality

Survivable
performance

Performance

Static: Inadequate
performannce

Tactical Load & Available Resources




Contributions of the DARPA ARMS Program

Demonstrated effective &
reliable dynamic allocation of
processes/tasks to processors

Measured QoS

L Yy

Workload &
Replicas

Connections &
priority bands

CPU & memory

Network latency
& bandwidth

Air Defense Application
Q_oS Land Attack Application
o
Algori

QoS
Control [t J —

Workload & Workload &
Replicas Replicas

Connections &
priority bands

CPU & memory
Network latency
& bandwidth

Connections &
priority bands

CPU & memory
Network latency
& bandwidth




Contributions of the DARPA ARMS Program

Air Defense Application
Q_oS Land Attack Application
o
Algori

QoS

|

Measured QoS L + L Y t '
Workload & Workload & Workload &
Replicas Replicas Replicas

Connections & Connections &
priority bands

CPU & memory

Connections &
priority bands

CPU & memory

priority bands

CPU & memory

Network latency Network laten Network laten
& bandwidth & bandwidthcy i bg:'ldwidthcy

Demonstrated survivability of
dynamic resource allocation
system itself




Workload &
Replicas

Connections & Connections & Connections
priority bands priority bands priority band

CPU & memo
ateng

s
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However, the Navy could not deploy ARMS DRM-based
systems due to challenges in certifying adaptive systems




Air Defense Applicatic
QoS

"We can't certify that
DDG-1000 doesn’t move into
unstable, incorrect, or unsafe

operating configurations e
during system operations” Sy bavce Sy bance o

Network lateng
& bandwidth




Challenges of Adaptive Dynamic Computing Environments

« To ensure real-time predictable quality
of service mission-/safety-critical DoD
systems today are statically configured

Primary

www.acd.osd.mil/se/docs/DoD-Safety-Data-Package-Preparation-Guide.pdf



http://www.acq.osd.mil/se/docs/DoD-Safety-Data-Package-Preparation-Guide.pdf

Challenges of Adaptive Dynamic Computing Environments

» There are a range of time-proven
techniques for certifying statically
configured systems

Primary




Challenges of Adaptive Dynamic Computing Environments

Primary

« Dynamically managed systems deliver
far greater efficiency & survivability




Challenges of Adaptive Dynamic Computing Environments

Primary

| *However, DRM techniques can't
| currently be deployed in
mission-/safety-critical DoD combat

systems because they are not certifiable
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Environments
» The Certification of Adaptive Dynamic Computing Environments
(CADYNCE) was a follow-on to ARMS that focused on two topics:

. ~ Certification of -
Adaptlve Dynamlc Computing Enwronments

(CADYNCE)
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» The Certification of Adaptive Dynamic Computing Environments
(CADYNCE) was a follow-on to ARMS that focused on two topics:

« How to constrain ARMS DRM to make it more “certification friendly”

+Land Attack Configs

Unallocated c2

Damage
Control

Internal Comms

Ship Control &

Planning

+Info Warfare Configs

Damage Control
Internal Comms

Ship Control &
Operations

Weapon Control

Cc2

Operations Sense
Sense
Weapon Control ExComms ExComms
+Air Defense Configs +Auto-Failover Configs
Unallocated
Damage Control co Dcaomn?rgf c2
Internal Comms . .
s anning
:gifr:;g:ls& Planning Internal Comms
Ship Control & Sense
Weapon Control Operations
ExComms sense Vé’:eafor ExComms
ontro
’ L] L] L] -
Pre-compute 100’s of certified configs that are then used dynamically
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Environments
» The Certification of Adaptive Dynamic Computing Environments
(CADYNCE) was a follow-on to ARMS that focused on two topics:

* How to create & integrate an assisted certification tool chain

Hardware Software
Profiles Formal Analyzer and metadata

>100

certifiable
> 1K ‘ Automated configurations

configs J Test Framework for full functionality
in the presence of

damage
1
Mission > e e
Descriptions Evidence S Evidence for

Database : e reviewing/
Simulation Automated Evidence Government
and Analysis Testing and Display Furnished

Bin Packer
(sw component
to hw allocator)

>100K
configs

auditing
certification
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Increasingly Static Increasingly Dynamic
Configuration Management Configuration Management

At runtime select At runtime select from At runtime generate new Continuous adaptation
from a few manually many automatically configurations based on through fine-grained
generated generated, analyzed, conditions that affect monitoring of resources
pre-certified tested, & pre-certified current configuration & applications
configurations configurations T
CADYNCE focused on enabling No technical approach enabled
certification of 100’s of configurations certification of more dynamic
that can be selected at runtime configuration management approaches

Availability of 100’s of certified configurations demo’'d
benefits of DRM behavior, while maintaining the
assurance of certification, but more R&D is needed




Concluding Remarks

 Adaptive dynamic computing
environments remain a key
topic for research & practice in
mission-/safety-critical systems

www.darpa.mil/program/building-resource-adaptive-software-systems



http://www.darpa.mil/program/building-resource-adaptive-software-systems

Concluding Remarks

Air Defense Applicatia

~k Application

» Adaptive dynamic computing ' eros s Q™™ [(“ionrena & Werkond
environments aren’t deployed oy bovas Sy o bty bond

In DoD combat systems since
they aren’t yet certifiable via
conventional methods




Concluding Remarks

* It's easier to pitch programs on
adaptive computing than to pitch
programs on certification of
adaptive computing..




\\;EEG}}P
Qe O‘\
18 56
Z S,

’ YLP~e

Panel Members

Dr. Douglas C. Schmidt is the
Cornelius Vanderbilt Professor of
Computer Science, Associate
Provost for Research
Development and Technologies,
Co-Chair of the Data Science
Institute, and a Senior Researcher
at the Institute for Software
Integrated Systems, all at
Vanderbilt University.

Dr. Mikael Lindvall Dr. Mikael
Lindvall, is the Technology
Director of Fraunhofer USA,
Center Mid-Atlantic (CMA) and an
adjunct professor at UMCP for
more than 10 years. He recently
created and delivered one of the
first courses on Software

Engineering for Al-based systems.

Dr. Jeffrey W. Herrmann is a
professor at the University of
Maryland, where he holds a joint
appointment with the Department
of Mechanical Engineering and the
Institute for Systems Research.

He is the director of the Reliability
Engineering Graduate Program
and the director of the Systems
Engineering Graduate Program at
the University of Maryland.

Dr. Laura Freeman is a
Research Associate Professor

of Statistics and the Director
of the Intelligent Systems Lab
at the Virginia Tech Hume
Center. Previously, she was
the Assistant Director of the
Operational Evaluation
Division at the Institute for
Defense Analyses.

L
~ Fraunhofer
USA



<
wn
=

P
()
Y
O
i -
c
-
(©
—

Al-BASED SYSTEMS NEED BETTER ENGINEERING TOOLS

Fraunhofer USA CMA

Dr. Mikael Lindvall




Traditional Tools and Methods Don't Always
Work With Al

= Visualization and Analysis

= Requirements

- Testing
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Requirements and Testing of Al and Autonomous Behavior

Disconnect

Vehicle List:

SimpleQuad
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« That provide visibility into neural networks

« That allow us to model and simulate requirements
« That allow us to generate test cases and identify oddities in system behavior

« During testing and runtime

Z Fraunhofer

© Fraunhofer 2019
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WANT TO HEAR MORE?

For more information
mlindvall@fraunhofer.org
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Al Systems as Organizations
Jeffrey W. Herrmann

1. Overview
2. Case study: IMPACT (Behymer et al., 2017)
3. Implications

Behymer, Kyle, Clayton Rothwell, Heath Ruff, Michael Patzek, Gloria Calhoun, Mark
Draper, Scott Douglass, Derek Kingston, and Doug Lange. Initial Evaluation of the
Intelligent Multi-UxV Planner with Adaptive Collaborative/Control Technologies
(IMPACT). Infoscitex Corp. Beavercreek, Ohio, 2017.

AFRL report number: AFRL-RH-WP-TR-2017-0011
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The IMPACT user interface (Behymer et al., 2017)

SYSTEM TOOLS
[CHAT, HELP]

& :
»

TACTICAL SA DISPLAY
[REAL TiME UV l.t\'FORMATlON]

—

SANDBOX DISPLAY
[PLAY CALLING & PLAY MANAGEMENT]

PAYLOAD

MANAGEMENT
[SENSORS]
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Play calling flowchart (Behymer et al., 2017)

f+ - )
Requests time to get to play

7 locationfor allUxVs th_at A
' fit play request constraints 3

~ % z
Provides time to get to play N
* locations for all UxVs that fit

lay request constraints
IA generates . Feried e
; - -

cCcA solution set Requests route plan(s)
5 —» CCA
for best vehicle(s)
1A \
r -

_ Provides route plan(s) for

L best vehicle(s) )
Rainbow

CCA updates
—®» plan to account for
vehicle movement

Accepts Play - IA requests
plan to execute

Rainbow
monitors
ongoing play

CCA = Cooperative control algorithm
IA = Intelligent agent
HAI = Human-autonomy interface



The organization included three personnel, an intelligent agent, and an algorithm.

Resume
normal
patrol
Commander
o Vehicle
Un1dent¥ﬁed operator
vessel is a Send
fishing boat UAV o
critical
facility
Sensor Intelligent
operator
agent
Cooperative
control
algorithm

60



This conceptual model describes the key activities in the decision-making system.

Recelve
command

Call play

Monitor
execution

Generate
solutions

Evaluate
solutions

Execute
plan

61



What additional activities are needed to control system performance?

Recelve
command

Call play

Monitor
performance

Monitor
execution

Generate
solutions

Modify
algorithms

Evaluate
solutions

Execute
plan

62
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VIRGINIA

What is Al Assurance? An evolving definition. TECH.

* Al Assurance provides the

necessary informationto
enable Al adoption into mission [ Use-Inspired Research
critical systems.

* The level of confidence that a - /

system leveraging Al algorithms
functions only as intended and

is free of vulnerabilities Explainable g
throughout the life cycle of the

system. This level of Reliable/ Fair/ : Privacy-
confidence stems from all the CET Unbiased Preserving

planned and systematic
activities implemented within
the algorithm and system
development that provide
confidence that a product or
service will fulfill requirements
for performance.

r—

Policy/Governance/Human Factors ]




VIRGINIA

We need a framework for Al Assurance TECH.

 Lots of Data Types
* Image, Video, Geospatial, Network Traffic, Time Series, etc.
* Labeled, unlabeled

* Lots of Analysis / Prediction Goals
* Detect, Classify, Track, Forecast, Optimize, Visualize

* Lots of Algorithm Types
e Supervised - labeled records with known output variable and algorithm learns how to predict the output variable
* Unsupervised - no labels are provided and algorithm makes inferences from input data
* Bagging — model development in parallel followed by some aggregation (typically averaging)

Boosting — sequential model development

Stacking — parallel model development and combines with a trained meta-model

* What makes a good algorithm depends on:
Problem that we are trying to address

Type of data

Available data (amount, balance, quality, etc.)
System complexity

Integration with the system (to include the humans)



. VIRGINIA
Test and Evaluation: Framework and Feedback Loop TECH.

(DOE,
CcOMBINATORIAL
TESTING)

(oPTIMAL
LEARNlNG)

Image Credit: John Matthew Guy, Chief of Multimedia, AFOTEC

67



VIRGINIA

Test and Evaluation Process TECH.

1. Describe mission, systems, functions

2. Determine what questions must be
answered

3. Derive evaluation, performance measures,
metrics

Analyze

. Determine factors and levels for testing
. Define testing scenarios and experiments

. Conduct experiments
.Analyze data

O NN O N B

. Feedback into future test planning



VIRGINIA

Research Challenges in Al Assurance TECH.

*Pro
*Pro
*Pro
*Pro

D
D
D

D

em 1: Defining Operating Envelopes for Artificial Intelligence

em 2: Understanding Models Robustness for Available Data

em 3: “Optimizing” Complex Configurations for Machine Learning Models
em 4: Developing Comprehensive Metrics for Al Assurance to Include Al

integration with Human Teams

* Problem 5: Characterizing Al Capabilities in Complex Systems




VIRGINIA

Defining Operating Envelopes: Motivating Problem TECH.
Questions
= How can we ensure that a model L
, Mission to
continues to perform as expected .
. detect in
after it is deployed?
. Northern
= Can we detect a drop in performance : :
. California
and react to it?
= Can we anticipate a drop in
performance and prevent it?
= How can we certify a model with
quantifiable, reliable guarantees of Trained t
expected performance? q tral?el O
= How can we accomplish all this -e ect planes
efficiently? n S(.)uthe.rn = = e
California SECA Sty




New Approaches to Defining Operating Envelopes

VIRGINIA
TECH.

Transfer distance metric

Operating Envelope

Inside Envelope ﬁ

Outside Envelope

Combinatorial coverage metric
Target
» Military plane in
field in daylight

2= [ INIVERSITY

OLD DOMINION

UNIVERSITY

VIRGINIA TECH. 3IllIE "7'\/TIRGINIA

Define operating envelopes of models allows us to
* Measure distance between source and target data
distributions
* Use metadata to measure proportion of target
data covered by source data
* Smartly select training, validation, and test splits

Plan for incorporating operating envelopes into an
efficient, automated process to ensure certification
1.  Search model zoo for model with sufficient

predicted performance based on metrics

-}
2.  Create ensemble of models from model zoo 3
with sufficient predicted performance §
3.  Fine-tune model with more target data ‘g
4. ldentify unlabeled data to collect based on @
metrics
5. Identify labeled data to collect based on metrics
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Set Difference Combinatorial Coverage Metrics
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1. Test how well the model performs in contexts it should have
learned VA T

SDCCM(V.\T,) =
* Prefer SDCCM(Validation \ Test) score close to 0 (VT Vi

* Best when SDCCM(Test \ Validation) also low
* Suggests representative of same population T\V
* Avoid confusion in testing contexts might not generalize well SDCCM(T\V,) = [T\ Vy

T
2. Test how well the model generalizes to contexts it hasn’t seen

* Prefer SDCCM(Test \ Validation) close to 1
Q>

3) 0 < SDCCM(V,\T,) < 1

1) SDCCM,(V,\T,) = 0

) §Tt>
0 < SPDCCM <
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5) SDCCM,(V,\T,) = 1

2) SDCCM(V,\T,) =0

4) 0 < SDCCM,(V,\T,) < 1
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