“SHOULD YOU RELY ON THAT AI?”

A New Look at Policy, Standards, and Requirements Specification

28 January 2021
Panelists

Lt Gen (ret) Ed Cardon
Former Director of the United States Army Office of Business Transformation and former Commander of the Second United States Army/United States Army Cyber Command; Professor of the Practice, Applied Research Laboratory for Intelligence and Security, University of Maryland

Dr. Chad Bieber
Director, Test and Evaluation, Project Maven, Johns Hopkins University Applied Physics Laboratory

Dr. Jane Pinelis
Chief, Test and Evaluation of AI/ML, Joint Artificial Intelligence Center, Former T&E lead for Project Maven

Prof. Michael Horowitz
Richard Perry Professor of Political Science, Director, Perry World House, University of Pennsylvania

Prof. Ben Shneiderman
Distinguished Professor of Computer Science and University of Maryland Institute for Advanced Computer Studies (UMIACS); Founding Director, Human Computer Interaction Lab; Affiliate, Institute for Systems Research and College of Information Studies, University of Maryland

Moderator: Dr. Craig Lawrence, Director, Systems Research, Applied Research Laboratory for Intelligence and Security; Visiting Research Scientist, Institute for Systems Research, Clark School of Engineering, University of Maryland
Panelists

Lt Gen (ret) Ed Cardon

Former Director of the United States Army Office of Business Transformation and former Commander of the Second United States Army/United States Army Cyber Command; Professor of the Practice, Applied Research Laboratory for Intelligence and Security, University of Maryland
Panelists

Dr. Chad Bieber
Director, Test and Evaluation, Project Maven, Johns Hopkins University Applied Physics Laboratory
Panelists

Dr. Jane Pinelis

Chief, Test and Evaluation of AI/ML,
Joint Artificial Intelligence Center
Panelists

Prof. Michael Horowitz

Richard Perry Professor of Political Science, Director, Perry World House, University of Pennsylvania
Policy Challenges Surrounding AI Testing

Michael C. Horowitz
University of Pennsylvania
January 28, 2021
Advances in AI have national security applications across a range of arenas, from the back office to the battlefield – need a way to test and validate AI-enabled systems

Questions exist both about how to effectively test AI systems and the standards for those tests compared to non-AI systems

Critical challenge: navigating between the risk of a trust gap and the risk of automation bias in policymaker perspectives on AI
The Stakes

• Effective AI testing and evaluation standards for the national security realm is important for multiple reasons:
 – To generate trust necessary for AI adoption
 – To reduce the risk of AI backsliding
 – To decrease the potential for accidents with AI-enabled systems
Key Dilemma: Designing AI testing policymakers can understand
What is Getting Tested?

- Systems with continual learning
 AND/OR
- Systems without continual learning
AI Testing Standards Compared to Other Systems

- Same standards as non-AI systems
- Lower standards than non-AI systems
- Higher standards than non-AI systems

Should testing standards depend on the area of application, specifics of the machine learning approach, or both?
Trust Gap
- Inability to trust machines to do work of people
- Unwillingness to deploy or properly use systems
- Example: Ground Tactical Air Controllers

Automation Bias
- Delegation of cognitive judgment to machine – trusting too much
- Failure to question algorithms if they make mistakes
- Example: Air France Crash
- Example: Patriot Missile fratricide
Trust, Confidence, and AI (2)

Perceived Effectiveness of System

<table>
<thead>
<tr>
<th>Time Since System Introduction</th>
<th>System Introduction</th>
<th>Perceived Effectiveness of System</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>0</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Trust Gap

Automation Bias

Tech Hype

Actual Effectiveness of System
Reducing the Risk of AI Backsliding

Backsliding refers to when accidents during adoption processes -> backlash against broader technology adoption

- AI is uniquely vulnerable to backsliding, as past AI winters show
- Reducing the risk:
 - Aligning expectations about AI with technological reality
 - Emphasizing the role of the human
 - Modernizing infrastructure
Conclusion

- Effective testing and evaluation standards are critical to AI adoption in national security, and preventing AI backsliding.
- Testing standards should depend on the type of AI application, and the degree of confidence in the AI method.
- Need to navigate between the risk of trust gaps and automation bias through testing.
Panelists

Prof. Ben Shneiderman

Distinguished Professor of Computer Science and University of Maryland Institute for Advanced Computer Studies (UMIACS); Founding Director, Human Computer Interaction Lab; Affiliate, Institute for Systems Research and College of Information Studies, University of Maryland
Panel: A New Look at Policy, Standards, and Requirements Specification

Ben Shneiderman @benbendc

Founding Director (1983-2000), Human-Computer Interaction Lab
Professor, Department of Computer Science

Member, National Academy of Engineering
Interdisciplinary research community
- Computer Science & Info Studies
- Psych, Socio, Educ, Jour & MITH

hcil.umd.edu
vimeo.com/72440805
Designing the User Interface

Design Theories

Direct manipulation
Menus, speech, search
Social Media
Information Visualization

www.cs.umd.edu/hcil/DTUI6

Sixth Edition: 2016
The University of Maryland, College Park (often referred to as the University of Maryland, Maryland, UM, UMD, UMCP, or College Park) is a public research university[10] located in the city of College Park in Prince George's County, Maryland, approximately 4 miles (6.4 km) from the northeast border of Washington, D.C. Founded in 1856, the university is the flagship institution of the University System of Maryland. With a fall 2010 enrollment of more than 37,000 students, over 100 undergraduate majors, and 120 graduate programs,
What is Human-Centered AI?
Human-Centered AI

Amplify, Augment, Enhance & Empower People
Human-Centered AI

Amplify, Augment, Enhance & Empower People

→ 1000-fold improvements in capabilities

- Information
- Search
- Email & Text
- Photography
- Navigation
- Business Formation
Human-Centered AI

Amplify, Augment, Enhance & Empower People

→ 1000-fold improvements in capabilities

Information Photography
Search Navigation
Email & Text Business Formation

→ RST: Reliable, Safe & Trustworthy
Human-Centered AI

Amplify, Augment, Enhance & Empower People
→ 1000-fold improvements in capabilities

Information Photography
Search Navigation
Email & Text Business Formation

→ RST: Reliable, Safe & Trustworthy
→ Human self-efficacy, creativity & responsibility
Human-Centered AI

Amplify, Augment, Enhance & Empower People

→ 1000-fold improvements in capabilities

 - Information
 - Search
 - Email & Text

 - Photography
 - Navigation
 - Business Formation

→ RST: Reliable, Safe & Trustworthy

→ Human self-efficacy, creativity & responsibility

→ Human values, rights & dignity

Supertools

Digital Camera Controls

Navigation Choices

Texting Autocompletion

Spelling correction

Congratulations

Received

auto-complete

It's great to hear from you... mistakes are hard to fix
Active Appliances

Coffee maker, Rice cooker, Blender

Dishwasher, Clothes Washer/Dryer
Implanted Cardiac Pacemakers
NASA Mars Rovers are Tele-Operated
DaVinci Tele-Operated Surgery

“Robots don’t perform surgery. Your surgeon performs surgery with da Vinci by using instruments that he or she guides via a console.”

https://www.davincisurgery.com/
Bloomberg Terminal
Governance Structures for Human-Centered AI
<table>
<thead>
<tr>
<th>HCAI Attributes that Are Candidates for Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>General virtues of the system itself</td>
</tr>
<tr>
<td>• Trustworthy: Can users trust the system to perform correctly?</td>
</tr>
<tr>
<td>• Responsible/Humane: Has the system been designed, developed, and tested in a responsible way?</td>
</tr>
<tr>
<td>• Ethical Design: Were stakeholders involved in the design?</td>
</tr>
<tr>
<td>• Ethical Data: Was the data collected in an ethical manner?</td>
</tr>
<tr>
<td>• Ethical Use: Will the system’s outcome be used in an ethical manner?</td>
</tr>
<tr>
<td>• Well-being/Benevolence: Does the system support human health, comfort, and values?</td>
</tr>
<tr>
<td>• Secure: How vulnerable is the system to attack?</td>
</tr>
<tr>
<td>• Private: Does the system protect a person’s identity and data?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performs well in practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Robust/Agile: Does the system perform well when inputs change?</td>
</tr>
<tr>
<td>• Reliable/Dependable: Does the system do the right thing?</td>
</tr>
<tr>
<td>• Available: Is the system running when needed?</td>
</tr>
<tr>
<td>• Resilient/Adaptive: Can the system recover from disruptions?</td>
</tr>
<tr>
<td>• Testable/Verifiable/Validatable/Certifiable: Can be tested to verify adherence to requirements?</td>
</tr>
<tr>
<td>• Safe: Does the system have a history of safe use?</td>
</tr>
</tbody>
</table>
Clarity to stakeholders
- **Accurate**: Does the system deliver correct results on test cases and real world cases?
- **Fair/Unbiased**: Are the system outcomes unbiased?
- **Accountable/Liable**: Who or what is responsible for the system’s outcome?
- **Transparent/Open**: Is it clear to an external observer how the system’s outcome was produced?
- **Interpretable/Explainable/Intelligible/Explicable**: Can the explain why an outcome has occurred?
- **Usable**: Can a human use it easily?

Enables independent oversight
- **Auditable**: Can the system be audited by others for retrospective forensic analysis of failures?
- **Trackable**: Does the system display status and next steps so human intervention is possible?
- **Traceable**: Is the system designed to allow tracing back from an outcome to the root cause?
- **Redressable**: Is there a process for those harmed to request review and compensation?
- **Insurable**: Does the design permit insurance companies to offer policies?
- **Recorded**: Does the system record activity for retrospective forensic review?
- **Open**: Is code and data publicly available for others to review?
- **Certified**: Have certification bodies reviewed and approved the system?

Complies with accepted practices
- **Compliant with standards**: Does the system comply with relevant standards, e.g. IEEE P7000 series?
- **Compliant with accepted software engineering workflows**: Was a trusted process used?
Summary
Human-Centered AI

Amplify, Augment, Enhance & Empower People
→ 1000-fold improvements in capabilities

- Information
- Search
- Email & Text
- Photography
- Navigation
- Business Formation

→ RST: Reliable, Safe & Trustworthy
→ Human self-efficacy, creativity & responsibility
→ Human values, rights & dignity
A Case for Cooperation Between Machines and Humans

A computer scientist argues that the quest for fully automated robots is misguided, perhaps even dangerous. His decades of warnings are gaining more attention.

By John Markoff

May 21, 2020 Updated 3:09 p.m. ET

Human-Centered Artificial Intelligence: Three fresh ideas, *AIS Trans. on Human-Computer Interaction* 12, 3 (Oct 2020). https://aisel.aisnet.org/thci/vol12/iss3/1/

Summary & resources: https://hcil.umd.edu/human-centered-ai/
Q&A